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From event-driven simulations of a gravity-driven channel flow of inelastic hard disks, we show that the
velocity distribution function remains close to a Gaussian for a wide range densities �even when the Knudsen
number is of order 1� if the walls are smooth and the particle collisions are nearly elastic. For dense flows, a
transition from a Gaussian to a power-law distribution for the high-velocity tails occurs with increasing
dissipation in the center of the channel, irrespective of wall roughness. For a rough wall, the near-wall
distribution functions are distinctly different from those in the bulk, even in the quasielastic limit.
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Granular materials, collections of macroscopic particles,
are important in the chemical and pharmaceutical industries
as well as in geophysical contexts �avalanches, sand dunes,
etc.�. In the rapid flow regime �1�, the theory for flowing
granular materials is largely based on the dense gas kinetic
theory which incorporates the inelastic nature of particle col-
lisions. At the heart of such gas- or liquid-state continuum
theories lies the concept of coarse graining over distribution
functions while making a transition from the particle-level
properties to the macroscale fields. Unlike the molecular
fluid, for which the Maxwell-Boltzmann �Gaussian or Max-
wellian� distribution plays the role of the “equilibrium” dis-
tribution function, however, the granular fluid does not pos-
sess any equilibrium state �1,2� due to the microscopic
dissipation of particle collisions. However, there are non-
equilibrium �driven� steady states for various canonical
granular flow configurations for which the Gaussian distribu-
tion is the leading-order velocity distribution �2� in appropri-
ate limits. A systematic study of distribution functions is,
therefore, of interest from the viewpoint of developing con-
stitutive models for granular flows as well as to pinpoint the
range of validity of any adopted theory. Another important
issue that needs attention is the derivation of continuum
boundary conditions for granular flows �3� where it is gen-
erally assumed that the distribution function in the near-wall
region is the same as that in the bulk, which is unlikely to
hold as we shall show here.

In driven granular flows, the deviation of the velocity dis-
tribution from a Gaussian has been studied through theory
�2,4�, simulation �5,6�, and experiment �7–9�. In Ref. �5� it
was shown that the velocity fluctuations in a vibrated bed of
particles follow a Gaussian distribution in the solid phase
and a power-law distribution �with an exponent −3� in the
fluidized phase. For plane shear flow �2�, the velocity distri-
bution function is well fitted by an exponent of a second-
order polynomial in the norm of the fluctuating velocities
with angle-dependent coefficients. Theoretical works �4� for
a randomly heated granular gas, based on the Boltzmann-
Enskog equation, have predicted velocity distribution func-
tions of the form P�v��exp�−�v��, with the exponent of

high-velocity tails being �=3/2, which also depends on the
level of inelastic dissipation. Experiments �7� for a granular
gas confined between two vertical plates and driven into a
steady state via vertical vibrations have shown that �
�1.55±0.1, for a wide range of frequency and amplitude of
vibrations. Some recent experiments �8�, however, showed
that the high-velocity tails cannot be described by a single
universal exponent.

In this paper we consider granular Poiseuille flow, which
is the gravity-driven flow of granular materials through a
two-dimensional channel �10�, focusing on the rapid flow
regime �1�. The simulated system is a channel of length L
along the periodic x direction and bounded by two plane
solid walls, parallel to the x direction, with a separation of
width W �along the y direction�. The granular material, con-
sisting of N identical rigid and smooth disks of equal mass
and diameter d, is driven by gravity along the x direction.
The interactions that are allowed are instantaneous dissipa-
tive collisions between pairs of particles and between a par-
ticle and the walls, via an event-driven algorithm �11�. The
dissipative nature of particle collisions is characterized by
the coefficient of normal restitution, en, which is the ratio
between the pre- and postcollisional relative velocities of the
colliding particles. There is no relative tangential velocity
since the particles are assumed to be smooth. The solid walls
are modeled as frictional surfaces, and a particle colliding
with a wall is analogous to a particle colliding with a particle
of infinite mass moving at the velocity of the wall. The fric-
tional properties of the walls are modeled using a single pa-
rameter, the coefficient of tangential restitution for particle-
wall collisions ��w�, which is defined as the fraction of
relative tangential momentum transmitted from a particle to
the wall during a particle-wall collision. The wall roughness
is controlled by choosing a specific value of �w: while �w
=1 corresponds to a fully smooth wall, �w=0 corresponds to
a fully rough wall for which the dissipation of energy at
walls is maximum and there is no relative tangential slip
between the particle surface and the wall upon a wall-particle
collision.

Apart from the wall-roughness parameter �w, the granular
Poiseuille flow is governed by three control parameters: the
average volume fraction ���, the coefficient of normal resti-
tution �en�, and the channel width �W /d�. It may be noted
that the gravitational acceleration �g� does not appear explic-
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itly as a control parameter since it is used as a reference scale
for time ��W /g�, velocity ��Wg�, and other mean fields. In
the present simulation, we have fixed N=900 and W /d=31
and varied the channel length �L /W� to change the average
volume fraction �=�N /4�L /W��W /d�2. �The robustness of
reported results was checked by increasing the number of
particles by fourfold.� The system is initially allowed to at-
tain a statistically steady state for which the streamwise ve-
locity �Ux�, volume fraction ���, and granular temperature
�T� remain invariant in time, but have spatial variations
along the wall-normal direction �y�. All the statistics pre-
sented in this paper are computed “binwise” by dividing the
channel into 18 bins along the wall-normal direction, and
collecting the data in each bin over about 300 000 collisions
per particle after reaching the steady state. An increase in the
number of bins to 31 did not alter the results; a few bins are
indicated by arrows in Fig. 1�b�, with bin=1,18 being lo-
cated adjacent to the walls and bin=9,10 at the center of the
channel. It is to be noted that ux=cx−Ux�t� and uy =cy are the
particle fluctuating velocities in the x and y directions, re-
spectively, over the instantaneous mean velocity; here Ux�t�
and Ux= �Ux�t�� are the instantaneous mean and time-
averaged mean streamwise velocity, respectively.

Figure 1�a� shows the probability distribution function of
the fluctuating streamwise velocity �ux� for dilute-to-dense
flows �0.015���0.56� in different bins. The wall rough-
ness has been set to �w=0.9 for smooth walls, and the resti-
tution coefficient to en=0.99 for quasielastic particle colli-
sions. �The distribution function of the fluctuating transverse
velocity uy looks similar, and hence is not shown.� The local
�binwise� distribution functions on only one side of the chan-
nel centerline are presented as the distributions on the other
side are the same; however, in some cases, the distributions
on both sides are presented when they differ. Note that the
horizontal axis in the velocity distribution plots is scaled by
�i=��ui

2�, where the index i denotes the coordinate direc-
tion, and the vertical axis has been scaled such that P�0�
=1. It is remarkable that the velocity distribution function in
all bins remains Gaussian for a wide range of densities
��	0.6�. This is a surprising result, especially in the dilute
limit, since the Knudsen number �see left inset in Fig. 1�a��,
which is the ratio between the mean free path and the chan-
nel width, Kn= lf /W, increases with decreasing � and be-
comes of O�1� in the dilute limit, signaling the onset of rar-
efied flow. Even in this rarefied regime, the velocity
distribution function remains Gaussian in granular Poiseuille
flow with smooth walls. From the profiles of temperature
�T�, mean velocity �Ux�, and volume fraction ��� in Fig. 1�b�,
we observe that the mean-field quantities develop consider-
able gradients along the y direction with increasing density
�and this is more pronounced for Ux; see lower inset in Fig.
1�b��, however, they are almost constant over the width of a
bin. The mean-field gradients do not seem to play any role in
determining the form of local velocity distribution functions
as long as the walls are smooth and the particle collisions are
quasielastic.

For a dense flow, �=0.56, with smooth walls �w=0.9, Fig.
2�a� shows the effect of collisional dissipation en on the form
of the P�ux� distribution in different bins. The velocity dis-

tribution in bin=1 �adjacent to the wall�, the upper inset in
Fig. 2�a�, remains close to Gaussian, irrespective of the value
of en. The P�ux� distribution in bin=5 �between the wall and
the channel centerline�, the lower inset in Fig. 2�a�, becomes
asymmetric with increasing dissipation, with an enhanced
probability of negative velocities �negative skewness�. At the
center of the channel �bin=9�, the high-velocity tails of the
distribution function undergo a transition from Gaussian to
non-Gaussian �with overpopulated tails� with increasing col-
lisional dissipation, as seen in the main panel of Fig. 2�a�.
The analog of Fig. 2�a� for the fluctuating transverse velocity
uy is shown in Fig. 2�b�. The transition of P�uy� in the chan-
nel centerline is very similar to that seen in P�ux�. The dis-
tribution in bin=1 remains Gaussian and is not shown here;
instead we include the distribution in bin=14. Note that the
P�uy� distributions in bin=5 and bin=14 are mirror images
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FIG. 1. �Color online� �a� Distribution function of ux for a range
of volume fractions in the quasielastic limit �en=0.99� for smooth
��w=0.9� walls in different bins. The dashed curve indicates a
Gaussian. Left inset shows the variation of Knudsen number Kn
with volume fraction. �b� Mean velocity �Ux�, granular temperature
�T�, and volume fraction ��� profiles across the width of the channel
for en=0.99 and �w=0.9 at different volume fractions. The arrows
near the left ordinate indicate the locations of some bins.
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since these bins are symmetrically located about the channel
centerline. The appearance of asymmetric distribution func-
tions in two shear layers �with increasing dissipation level�
could be a consequence of density waves �12� in narrow
shear layers. �Within the plug region, however, the local dis-
tribution functions are slightly affected by such asymme-
tries.� This issue is relegated to a future study.

For parameter values as in Fig. 2, the profiles of the
mean-field quantities are displayed in Fig. 3�a� which shows
the emergence of a plug around the channel centerline �with
negligible gradients in Ux, T, and �� with decreasing en, and
two shear layers adjacent to two walls with steep gradients in
Ux, T, and �. To pinpoint the role of en in the distribution
functions, first we study its effect on the pair correlation
function and the spatial velocity correlation. The velocity
correlation function is defined as follows:

Cij�
x� =
�ui�x�uj�x + 
x��

�ui�x�ui�x��
,

where the indices i , j denote the coordinate directions. In the
quasielastic limit, the pair correlation function, the lower in-
set in Fig. 3�b�, shows a liquidlike structure in all bins and
the velocity correlation is close to zero �not shown�. The
signatures of plug formation with increasing dissipation
show up in the pair correlation function �the main panel of
Fig. 3�b��, which indicates a transition from a liquid to a
crystal-like structure in bin=9 at en=0.8. With increasing
density correlation in bin=9, the velocity correlation Cxx also
becomes strong, as shown in the upper inset of Fig. 3�b�. �It
is interesting to note that the velocity correlation is negative
beyond a certain correlation length x /d�10, which is an
indicator of circulatory-type motion �13� for the fluctuating
velocity field.� At en=0.8, the pair correlation function out-
side the plug region �bin=1,5� shows a gaseous structure,
and the Cxx correlation is weak or absent �see upper inset in
Fig. 3�b��. Clearly, the enhanced density and velocity corre-
lations around the channel centerline are responsible for the
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FIG. 2. �Color online� �a� Effect of restitution coefficient, en, on
P�ux� at �=0.56 for smooth walls ��w=0.9�. The velocity distribu-
tion in bin=1, upper inset, remains a Gaussian, the distribution in
bin=5, lower inset, develops asymmetric tails and the distribution
in bin=9 makes a transition from Gaussian to a power-law tails
with increasing dissipation. Left Inset: Variation of power-law ex-
ponent, �, with en. �b� Same as in panel �a� but for P�uy� in log-log
scale to discern the power-law behavior.
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FIG. 3. �Color online� �a� Variations of Ux, T, and � along y,
with parameter values as in Fig. 2. �b� Main panel: Pair correlation
function g�x� in different bins at �=0.56 for en=0.8 with smooth
walls ��w=0.9�. Upper inset: Streamwise velocity correlation func-
tion �Cxx� with parameter values as in main panel. Lower inset: g�x�
in different bins for en=0.99, which shows a liquidlike structure.
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emergence of non-Gaussian tails with increasing dissipation
�Fig. 2�.

With reference to dense flows in Fig. 2, the tails of P�ui�
in the plug region can be fitted via a power law of the form
P�ui��ui

−�i, with a single exponent, �x�7 and �y �5.5, for
a range of restitution coefficients �see the left insets in Figs.
2�a� and 2�b��. The near constancy of �i for en	0.85 is due
to the fact that the density within the plug saturates to the
close-packing limit ��c�0.9� for en	0.85 and consequently
the other hydrodynamic fields also remain invariant there
with a further decrease in en. This weak variation of �i with
en is also implicated in its variation with average density. A
similar power-law behavior �with ��2.9–7.4� has recently
been observed in experiments of gravity-driven channel flow
�9�; however, it is difficult to make a direct comparison since
the experimental geometry is different �with a sieve at the
bottom� and the flow corresponds to the dense quasistatic
regime.

The effect of wall roughness on P�ux� is shown in Fig. 4,
for a rough wall �w=0.1 with quasielastic collisions en
=0.99. The P�ux� distribution near the wall �bin=1, main
panel� develops a single-peak asymmetric structure at all
densities, with its peak being positioned at some negative

velocity. Near the centerline �bin=9, upper inset�, however,
P�ux� remains asymmetric only at low densities and becomes
Gaussian at larger densities. The corresponding P�uy� distri-
bution �not shown� remains a Gaussian at all densities in the
quasielastic limit. For dense flows with rough walls, both
P�ux� and P�uy� develop power-law tails with decreasing en
around the channel centerline as in Fig. 2 for smooth walls;
the wall roughness did not influence the associated power-
law exponents.

Focusing on the dilute regime ��=0.015�, the effect of �w
on P�ux� in bin=1 is shown in the lower inset of Fig. 4. It is
clear that the asymmetry in P�ux� diminishes with increasing
wall smoothness ��w� and the distribution becomes Gaussian
when the walls are smooth ��w=0.9�. This wall-roughness-
induced asymmetry in P�ux� is also reflected in the probabil-
ity distribution of the instantaneous particle streamwise ve-
locity cx �not shown�, with a single peak in the low-velocity
region for bin=1; also, P�cx� for �=0.015 approaches a
Gaussian with increased wall smoothness. Since the particles
lose a significant amount of tangential velocity while collid-
ing with a rough wall in comparison with their collisions
with a smooth wall, a peak near the low-velocity region is
expected for rough walls. The greater the loss of tangential
velocity at walls, the more is the deviation from a Gaussian,
and the related asymmetry in Fig. 4 is, therefore, tied to wall
roughness. On the whole, in dilute flows the effect of wall
roughness is felt on the local distribution functions through-
out the channel, whereas for dense flows only the near-wall
region is affected.

In conclusion, the local velocity distribution functions in a
granular Poiseuille flow �GPF� with smooth walls remain
Gaussian for a wide range of densities for nearly elastic col-
lisions �en→1�, which, in turn, suggests that the GPF �with
smooth walls� could serve as a prototype nonequilibrium
steady state to derive constitutive models starting from the
Boltzmann-Engkog equation. For dense flows, enhanced
density correlations and the related spatial velocity correla-
tions are responsible for the emergence of power-law tails
with increasing collisional dissipation around the channel
centerline �irrespective of wall roughness� where the flow
undergoes a transition from a liquidlike to a crystal-like
�plug� structure in the same limit. For a rough wall, the near-
wall distribution functions are significantly different from
those in the bulk at all densities which calls for a reconsid-
eration of the derivation of granular boundary conditions �3�.
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